240 research outputs found

    Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue

    Full text link
    The present study focused on the effects of trunk extensor muscles fatigue on postural control during quiet standing under different somatosensory conditions from the foot and the ankle. With this aim, 20 young healthy adults were asked to stand as immobile as possible in two conditions of No fatigue and Fatigue of trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot and the ankle was degraded by standing on a foam surface. In Experiment 2 (n = 10), somatosensation from the foot and ankle was facilitated through the increased cutaneous feedback at the foot and ankle provided by strips of athletic tape applied across both ankle joints. The centre of foot pressure displacements (CoP) were recorded using a force platform. The results showed that (1) trunk extensor muscles fatigue increased CoP displacements under normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this destabilizing effect was exacerbated when somatosensation from the foot and the ankle was degraded (Experiment 1), and (3) this destabilizing effect was mitigated when somatosensation from the foot and the ankle was facilitated (Experiment 2). Altogether, the present findings evidenced re-weighting of sensory cues for controlling posture during quiet standing following trunk extensor muscles fatigue by increasing the reliance on the somatosensory inputs from the foot and the ankle. This could have implications in clinical and rehabilitative areas

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine if increased visual dependence can be quantified through its impact on automatic postural responses, we have measured the combined effect on the latencies and magnitudes of postural response kinematics of transient optic flow in the pitch plane with platform rotations and translations.</p> <p>Methods</p> <p>Six healthy (29–31 yrs) and 4 visually sensitive (27–57 yrs) subjects stood on a platform rotated (6 deg of dorsiflexion at 30 deg/sec) or translated (5 cm at 5 deg/sec) for 200 msec. Subjects either had eyes closed or viewed an immersive, stereo, wide field of view virtual environment (scene) moved in upward pitch for a 200 msec period for three 30 sec trials at 5 velocities. RMS values and peak velocities of head, trunk, and head with respect to trunk were calculated. EMG responses of 6 trunk and lower limb muscles were collected and latencies and magnitudes of responses determined.</p> <p>Results</p> <p>No effect of visual velocity was observed in EMG response latencies and magnitudes. Healthy subjects exhibited significant effects (<it>p </it>< 0.05) of visual field velocity on peak angular velocities of the head. Head and trunk velocities and RMS values of visually sensitive subjects were significantly larger than healthy subjects (<it>p </it>< 0.05), but their responses were not modulated by visual field velocity. When examined individually, patients with no history of vestibular disorder demonstrated exceedingly large head velocities; patients with a history of vestibular disorder exhibited head velocities that fell within the bandwidth of healthy subjects.</p> <p>Conclusion</p> <p>Differentiation of postural kinematics in visually sensitive subjects when exposed to the combined perturbations suggests that virtual reality technology could be useful for differential diagnosis and specifically designed interventions for individuals whose chief complaint is sensitivity to visual motion.</p

    Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise

    Get PDF
    We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli

    Self versus Environment Motion in Postural Control

    Get PDF
    To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    Get PDF
    BACKGROUND: Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. METHODS: Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. RESULTS: No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. CONCLUSION: These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions

    Reproducibility of postural control measurement during unstable sitting in low back pain patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postural control tests like standing and sitting stabilometry are widely used to evaluate neuromuscular control related to trunk balance in low back pain patients. Chronic low back pain patients have lesser postural control compared to healthy subjects. Few studies have assessed the reproducibility of the centre of pressure deviations and to our knowledge no studies have investigated the reproducibility of three-dimensional kinematics of postural control tests in a low back pain population. Therefore the aim of this study was to assess the test-retest reproducibility of a seated postural control test in low back pain patients.</p> <p>Methods</p> <p>Postural control in low back pain patients was registered by a three dimensional motion analysis system combined with a force plate. Sixteen chronic low back pain patients having complaints for at least six months, were included based on specific clinical criteria. Every subject performed 4 postural control tests. Every test was repeated 4 times and lasted 40 seconds. The force plate registered the deviations of the centre of pressure. A Vicon-612-datastation, equipped with 7 infra-red M1 camera's, was used to track 13 markers attached to the torso and pelvis in order to estimate their angular displacement in the 3 cardinal planes.</p> <p>Results</p> <p>All Intraclass Correlation Coefficients (ICC) calculated for the force plate variables did not exceed 0.73 (ranging between 0.11 and 0.73). As for the torso, ICC's of the mean flexion-extension and rotation angles ranged from 0.65 to 0.93 and of the mean lateral flexion angle from 0.50 to 0.67. For the pelvis the ICC of the mean flexion-extension angle varied between 0.66 and 0.83, the mean lateral flexion angle between 0.16 and 0.81 and the mean rotation angle between 0.40 and 0.62.</p> <p>Consecutive data suggest that the low test-retest reproducibility is probably due to a learning effect.</p> <p>Conclusion</p> <p>The test-retest reproducibility of these postural control tests in an unstable sitting position can globally be considered as rather moderate. In order to improve the test-retest reproducibility, a learning period may be advisable at the beginning of the test.</p

    Postural Control during the Stroop Test in Dyslexic and Non Dyslexic Teenagers

    Get PDF
    Postural control in quiet stance although simple still requires some cognitive resources; dual cognitive tasks influence further postural control. The present study examines whether or not dyslexic teenagers experience postural instability when performing a Stroop dual task for which their performances are known to be poor. Fifteen dyslexics and twelve non-dyslexics (14 to 17 years old) were recruited from the same school. They were asked to perform three tasks: (1) fixate a target, (2) perform an interference Stroop test (naming the colour or the word rather than reading the word), (3) performing flexibility Stroop task: the subject performed the interference task as in (2) except when the word was in a box, in which case he had to read the word. Postural performances were measured with a force platform. The results showed a main task effect on the variance of speed of body sway only: such variance was higher in the flexibility task than for the other two tasks. No group effect was found for any of the parameters of posture (surface, mediolateral and anteroposterior sway, variance of speed). Further wavelet analysis in the time-frequency domain revealed an increase in the spectral power of the medium frequency range believed to be related to cerebellum control; an accompanying increase in the cancellation time of the high frequency band related to reflexive loops occurred for non-dyslexics only. These effects occurred for the flexibility task and could be due to its high cognitive difficulty. Dyslexics displayed shorter cancellation time for the medium frequency band for all tasks, suggesting less efficient cerebellar control, perhaps of eye fixation and attention influencing body sway. We conclude that there is no evidence for a primary posture deficit in 15 year old teenagers who come from the general population and who were recruited in schools

    Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control

    Get PDF
    The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of these results are discussed
    • …
    corecore